Launched alongside The Museum of Modern
Art “Design and The Elastic Mind” exhibition, the Morph concept device
is a bridge between highly advanced technologies and their potential
benefits to end-users. This device concept showcases some revolutionary
leaps being explored by Nokia Research Center (NRC) in collaboration
with the Cambridge Nanoscience Centre (United Kingdom) – nanoscale
technologies that will potentially create a world of radically different
devices that open up an entirely new spectrum of possibilities.
Morph concept technologies might create fantastic opportunities for mobile devices:Newly-enabled flexible and transparent materials blend more seamlessly with the way we live
Morph concept technologies might create fantastic opportunities for mobile devices:Newly-enabled flexible and transparent materials blend more seamlessly with the way we live
Devices become self-cleaning and self-preserving
Transparent electronics offering an entirely new aesthetic dimension
Built-in solar absorption might charge a device, whilst batteries become smaller, longer lasting and faster to charge
Integrated sensors might allow us to learn more about the environment around us, empowering us to make better choices.
In addition to the advances above, the integrated electronics shown in the Morph concept could cost less and include more functionality in a much smaller space, even as interfaces are simplified and usability is enhanced. All of these new capabilities will unleash new applications and services that will allow us to communicate and interact in unprecedented ways.
Nanotechnology enables materials and components that are flexible, stretchable, transparent and remarkably strong. Fibril proteins are woven into a three dimensional mesh that reinforces thin elastic structures. Using the same principle behind spider silk, this elasticity enables the device to literally change shapes and configure itself to adapt to the task at hand.
A folded design would fit easily in a
pocket and could lend itself ergonomically to being used as a
traditional handset. An unfolded larger design could display more
detailed information, and incorporate input devices such as keyboards
and touch pads.
Even integrated electronics, from
interconnects to sensors, could share these flexible properties.
Further, utilization of biodegradable materials might make production
and recycling of devices easier and ecologically friendly.
Self-Cleaning
Nanotechnology also can be leveraged to
create self-cleaning surfaces on mobile devices, ultimately reducing
corrosion, wear and improving longevity. Nanostructured surfaces, such
as “Nanoflowers” naturally repel water, dirt, and even fingerprints
utilizing effects also seen in natural systems.
Advanced Power Sources
Nanotechnology holds out the possibility
that the surface of a device will become a natural source of energy via a
covering of “Nanograss” structures that harvest solar power. At the
same time new high energy density storage materials allow batteries to
become smaller and thinner, while also quicker to recharge and able to
endure more charging cycles.
Sensing The Environment
Nanosensors would empower users to
examine the environment around them in completely new ways, from
analyzing air pollution, to gaining insight into bio-chemical traces and
processes. New capabilities might be as complex as helping us monitor
evolving conditions in the quality of our surroundings, or as simple as
knowing if the fruit we are about to enjoy should be washed before we
eat it. Our ability to tune into our environment in these ways can help
us make key decisions that guide our daily actions and ultimately can
enhance our health.
No comments:
Post a Comment